A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems

نویسندگان

  • Martin Kin Lok Wong
  • James Robert Krycer
  • James Geoffrey Burchfield
  • David Ernest James
  • Zdenka Kuncic
چکیده

Quasi steady-state enzyme kinetic models are increasingly used in systems modelling. The Michaelis Menten model is popular due to its reduced parameter dimensionality, but its low-enzyme and irreversibility assumption may not always be valid in the in vivo context. Whilst the total quasi-steady state assumption (tQSSA) model eliminates the reactant stationary assumptions, its mathematical complexity is increased. Here, we propose the differential quasi-steady state approximation (dQSSA) kinetic model, which expresses the differential equations as a linear algebraic equation. It eliminates the reactant stationary assumptions of the Michaelis Menten model without increasing model dimensionality. The dQSSA was found to be easily adaptable for reversible enzyme kinetic systems with complex topologies and to predict behaviour consistent with mass action kinetics in silico. Additionally, the dQSSA was able to predict coenzyme inhibition in the reversible lactate dehydrogenase enzyme, which the Michaelis Menten model failed to do. Whilst the dQSSA does not account for the physical and thermodynamic interactions of all intermediate enzyme-substrate complex states, it is proposed to be suitable for modelling complex enzyme mediated biochemical systems. This is due to its simpler application, reduced parameter dimensionality and improved accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Modeling of Enzymatic Hydrolysis of Pretreated Sorghum Bicolor and Rice Husk

In this study, the hydrolysis of pretreated sorghum stem and rice husk was investigated at various initial enzyme concentrations and substrate loadings. The slowdown in enzymatic hydrolysis of lignocellulosic materials with conversion has often been attributed to decreasing the activity of enzyme. A kinetic model was developed and expressed mathematically based on enzyme deactivation for enzyma...

متن کامل

The Paradox of Intervening in Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”

This commentary addresses two points raised by Kitson and colleagues’ article. First, increasing interest in applying the Complexity Theory lens in healthcare needs further systematic work to create some commonality between concepts used. Second, our need to adopt a better understanding of how these systems organise so we can change the systems overall behaviour, creates a paradox. We seek to m...

متن کامل

A novel approach to distinguish between enzyme mechanisms: quasi-steady-state kinetic analysis of the prostaglandin H synthase peroxidase reaction.

A method of analysis for steady-state kinetic data has been developed that allows relationships between key partial reactions in the catalytic cycle of a functioning enzyme to be determined. The novel approach is based on a concept of scalar and vector 'kinetic connectivities' between enzyme intermediates in an arbitrary enzyme mechanism. The criterion for the agreement between experimental dat...

متن کامل

Use and abuse of the quasi-steady-state approximation.

The transient kinetic behaviour of an open single enzyme, single substrate reaction is examined. The reaction follows the Van Slyke-Cullen mechanism, a spacial case of the Michaelis-Menten reaction. The analysis is performed both with and without applying the quasi-steady-state approximation. The analysis of the full system shows conditions for biochemical pathway coupling, which yield sustaine...

متن کامل

Kinetics and Isotherm Studies of the Immobilized Lipase on Chitosan Support

The kinetics and isotherm studies of the immobilized lipase and the mechanism of immobilization on chitosan beads and activated chitosan beads with glutaraldehyde were investigated. The effect of glutaraldehyde on porosity of chitosan was evaluated by FESEM analysis. It was observed that the porosity of the carrier which has activated by glutaraldehyde was substantially increased. The validity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015